Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Cell Genom ; 4(4): 100527, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537634

RESUMO

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.


Assuntos
Genoma , Genômica , Ratos , Animais , Genoma/genética , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma , Variação Genética/genética
2.
Hypertension ; 81(2): 229-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031837

RESUMO

Essential hypertension, a multifaceted disorder, is a worldwide health problem. A complex network of genetic, epigenetic, physiological, and environmental components regulates blood pressure (BP), and any dysregulation of this network may result in hypertension. Growing evidence suggests a role for epigenetic factors in BP regulation. Any alterations in the expression or functions of these epigenetic regulators may dysregulate various determinants of BP, thereby promoting the development of hypertension. Histone posttranslational modifications are critical epigenetic regulators that have been implicated in hypertension. Several studies have demonstrated a clear association between the increased expression of some histone-modifying enzymes, especially HDACs (histone deacetylases), and hypertension. In addition, treatment with HDAC inhibitors lowers BP in hypertensive animal models, providing an excellent opportunity to design new drugs to treat hypertension. In this review, we discuss the potential contribution of different histone modifications to the regulation of BP.


Assuntos
Código das Histonas , Hipertensão , Animais , Histonas , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão Essencial , Processamento de Proteína Pós-Traducional , Epigênese Genética
3.
Physiol Genomics ; 56(3): 265-275, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145289

RESUMO

Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.


Assuntos
Fator 4 Semelhante a Kruppel , Neurônios , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Hipotálamo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(49): e2312039120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015847

RESUMO

In both humans and NOD mice, type 1 diabetes (T1D) develops from the autoimmune destruction of pancreatic beta cells by T cells. Interactions between both helper CD4+ and cytotoxic CD8+ T cells are essential for T1D development in NOD mice. Previous work has indicated that pathogenic T cells arise from deleterious interactions between relatively common genes which regulate aspects of T cell activation/effector function (Ctla4, Tnfrsf9, Il2/Il21), peptide presentation (H2-A g7, B2m), and T cell receptor (TCR) signaling (Ptpn22). Here, we used a combination of subcongenic mapping and a CRISPR/Cas9 screen to identify the NOD-encoded mammary tumor virus (Mtv)3 provirus as a genetic element affecting CD4+/CD8+ T cell interactions through an additional mechanism, altering the TCR repertoire. Mtv3 encodes a superantigen (SAg) that deletes the majority of Vß3+ thymocytes in NOD mice. Ablating Mtv3 and restoring Vß3+ T cells has no effect on spontaneous T1D development in NOD mice. However, transferring Mtv3 to C57BL/6 (B6) mice congenic for the NOD H2 g7 MHC haplotype (B6.H2 g7) completely blocks their normal susceptibility to T1D mediated by transferred CD8+ T cells transgenically expressing AI4 or NY8.3 TCRs. The entire genetic effect is manifested by Vß3+CD4+ T cells, which unless deleted by Mtv3, accumulate in insulitic lesions triggering in B6 background mice the pathogenic activation of diabetogenic CD8+ T cells. Our findings provide evidence that endogenous Mtv SAgs can influence autoimmune responses. Furthermore, since most common mouse strains have gaps in their TCR Vß repertoire due to Mtvs, it raises questions about the role of Mtvs in other mouse models designed to reflect human immune disorders.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Humanos , Animais , Linfócitos T CD8-Positivos , Camundongos Endogâmicos NOD , Vírus do Tumor Mamário do Camundongo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD4-Positivos , Camundongos Transgênicos
5.
Diabetes ; 72(12): 1795-1808, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722138

RESUMO

There is clinical evidence that increased urinary serine proteases are associated with the disease severity in the setting of diabetic nephropathy (DN). Elevation of serine proteases may mediate [Ca2+]i dynamics in podocytes through the protease-activated receptors (PARs) pathway, including associated activation of nonspecific cation channels. Cultured human podocytes and freshly isolated glomeruli were used for fluorescence and immunohistochemistry stainings, calcium imaging, Western blot analysis, scanning ion conductance microscopy, and patch clamp analysis. Goto-Kakizaki, Wistar, type 2 DN (T2DN), and a novel PAR1 knockout on T2DN rat background rats were used to test the importance of PAR1-mediated signaling in DN settings. We found that PAR1 activation increases [Ca2+]i via TRPC6 channels. Both human cultured podocytes exposed to high glucose and podocytes from freshly isolated glomeruli of T2DN rats had increased PAR1-mediated [Ca2+]i compared with controls. Imaging experiments revealed that PAR1 activation plays a role in podocyte morphological changes. T2DN rats exhibited a significantly higher response to thrombin and urokinase. Moreover, the plasma concentration of thrombin in T2DN rats was significantly elevated compared with Wistar rats. T2DNPar1-/- rats were embryonically lethal. T2DNPar1+/- rats had a significant decrease in glomerular damage associated with DN lesions. Overall, these data provide evidence that, during the development of DN, elevated levels of serine proteases promote an excessive [Ca2+]i influx in podocytes through PAR1-TRPC6 signaling, ultimately leading to podocyte apoptosis, the development of albuminuria, and glomeruli damage. ARTICLE HIGHLIGHTS: Increased urinary serine proteases are associated with diabetic nephropathy. During the development of diabetic nephropathy in type 2 diabetes, the elevation of serine proteases could overstimulate protease-activated receptor 1 (PAR1). PAR1 signaling is involved in the development of DN via TRPC6-mediated intracellular calcium signaling. This study provides fundamental knowledge that can be used to develop efficient therapeutic approaches targeting serine proteases or corresponding PAR pathways to prevent or slow the progression of diabetes-associated kidney diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Podócitos , Ratos , Humanos , Animais , Nefropatias Diabéticas/metabolismo , Podócitos/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptor PAR-1/uso terapêutico , Canal de Cátion TRPC6/metabolismo , Canal de Cátion TRPC6/uso terapêutico , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Trombina/metabolismo , Trombina/uso terapêutico , Ratos Wistar
6.
J Cardiovasc Pharmacol ; 82(6): 445-457, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643020

RESUMO

ABSTRACT: The progression of chronic kidney disease results from the accumulation of extracellular matrix leading to end-stage renal disease. We previously demonstrated that a broad-spectrum matrix metalloproteinase (MMP) inhibitor reduced renal injury in rat models of hypertension and diabetes. However, the isoforms and mechanisms involved are unclear. This study examined the role of MMP2 during the development of proteinuria and renal injury after induction of hypertension or diabetes in Dahl salt-sensitive (SS) and MMP2 knockout (KO) rats. Mean arterial pressure rose from 115 ± 2 to 145 ± 2 mm Hg and 116 ± 1 to 152 ± 3 mm Hg in MMP2 KO and SS rats fed a high-salt (8% NaCl) diet for 3 weeks. The degree of proteinuria, glomerular injury, renal fibrosis, and podocyte loss was lower in MMP2 KO rats than in SS rats. Blood glucose and HbA1c levels, and mean arterial pressure rose to the same extent in streptozotocin-treated SS and MMP2 KO rats. However, the degree of proteinuria, glomerulosclerosis, renal fibrosis, renal hypertrophy, glomerular permeability to albumin, and the renal expression of MMP2 and TGFß1 were significantly reduced in MMP2 KO rats. Glomerular filtration rate fell by 33% after 12 weeks of diabetes in streptozotocin-treated SS rats compared with time-control rats, but glomerular filtration rate only fell by 12% in MMP2 KO rats. These results indicate that activation of MMP2 plays an essential role in the pathogenesis of hypertensive and diabetic nephropathy and suggests that an MMP2 inhibitor might slow the progression of chronic kidney disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hipertensão , Insuficiência Renal Crônica , Ratos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Estreptozocina/metabolismo , Ratos Endogâmicos Dahl , Hipertensão/metabolismo , Rim , Proteinúria/genética , Proteinúria/metabolismo , Insuficiência Renal Crônica/complicações , Fibrose , Pressão Sanguínea , Cloreto de Sódio na Dieta , Diabetes Mellitus/metabolismo
7.
BMC Genomics ; 24(1): 371, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394518

RESUMO

BACKGROUND: A common feature of single-cell RNA-seq (scRNA-seq) data is that the number of cells in a cell cluster may vary widely, ranging from a few dozen to several thousand. It is not clear whether scRNA-seq data from a small number of cells allow robust identification of differentially expressed genes (DEGs) with various characteristics. RESULTS: We addressed this question by performing scRNA-seq and poly(A)-dependent bulk RNA-seq in comparable aliquots of human induced pluripotent stem cells-derived, purified vascular endothelial and smooth muscle cells. We found that scRNA-seq data needed to have 2,000 or more cells in a cluster to identify the majority of DEGs that would show modest differences in a bulk RNA-seq analysis. On the other hand, clusters with as few as 50-100 cells may be sufficient for identifying the majority of DEGs that would have extremely small p values or transcript abundance greater than a few hundred transcripts per million in a bulk RNA-seq analysis. CONCLUSION: Findings of the current study provide a quantitative reference for designing studies that aim for identifying DEGs for specific cell clusters using scRNA-seq data and for interpreting results of such studies.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas , Humanos , Perfilação da Expressão Gênica/métodos , Análise da Expressão Gênica de Célula Única , RNA-Seq , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos
8.
Physiol Genomics ; 55(10): 452-467, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458463

RESUMO

We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.


Assuntos
Adiposidade , COVID-19 , Humanos , Ratos , Feminino , Animais , Camundongos , Adiposidade/genética , Pandemias , COVID-19/genética , Controle de Doenças Transmissíveis , Obesidade/genética , Obesidade/metabolismo , Corticosterona , Dieta Hiperlipídica/efeitos adversos , Fenótipo , Camundongos Knockout
9.
Am J Pathol ; 193(10): 1528-1547, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422147

RESUMO

Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.


Assuntos
Miopatias da Nemalina , Animais , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Debilidade Muscular , Músculo Esquelético/metabolismo , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Proteômica
10.
Am J Pathol ; 193(10): 1548-1567, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419385

RESUMO

ACTA1 encodes skeletal muscle-specific α-actin, which polymerizes to form the thin filament of the sarcomere. Mutations in ACTA1 are responsible for approximately 30% of nemaline myopathy (NM) cases. Previous studies of weakness in NM have focused on muscle structure and contractility, but genetic issues alone do not explain the phenotypic heterogeneity observed in patients with NM or NM mouse models. To identify additional biological processes related to NM phenotypic severity, proteomic analysis was performed using muscle protein isolates from wild-type mice in comparison to moderately affected knock-in (KI) Acta1H40Y and the minimally affected transgenic (Tg) ACTA1D286G NM mice. This analysis revealed abnormalities in mitochondrial function and stress-related pathways in both mouse models, supporting an in-depth assessment of mitochondrial biology. Interestingly, evaluating each model in comparison to its wild-type counterpart identified different degrees of mitochondrial abnormality that correlated well with the phenotypic severity of the mouse model. Muscle histology, mitochondrial respiration, electron transport chain function, and mitochondrial transmembrane potential were all normal or minimally affected in the TgACTA1D286G mouse model. In contrast, the more severely affected KI.Acta1H40Y mice displayed significant abnormalities in relation to muscle histology, mitochondrial respirometry, ATP, ADP, and phosphate content, and mitochondrial transmembrane potential. These findings suggest that abnormal energy metabolism is related to symptomatic severity in NM and may constitute a contributor to phenotypic variability and a novel treatment target.


Assuntos
Miopatias da Nemalina , Animais , Camundongos , Actinas/genética , Modelos Animais de Doenças , Músculo Esquelético/metabolismo , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Proteômica
11.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L174-L189, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366533

RESUMO

Pneumonia elicits the production of cytotoxic beta amyloid (Aß) that contributes to end-organ dysfunction, yet the mechanism(s) linking infection to activation of the amyloidogenic pathway that produces cytotoxic Aß is unknown. Here, we tested the hypothesis that gamma-secretase activating protein (GSAP), which contributes to the amyloidogenic pathway in the brain, promotes end-organ dysfunction following bacterial pneumonia. First-in-kind Gsap knockout rats were generated. Wild-type and knockout rats possessed similar body weights, organ weights, circulating blood cell counts, arterial blood gases, and cardiac indices at baseline. Intratracheal Pseudomonas aeruginosa infection caused acute lung injury and a hyperdynamic circulatory state. Whereas infection led to arterial hypoxemia in wild-type rats, the alveolar-capillary barrier integrity was preserved in Gsap knockout rats. Infection potentiated myocardial infarction following ischemia-reperfusion injury, and this potentiation was abolished in knockout rats. In the hippocampus, GSAP contributed to both pre- and postsynaptic neurotransmission, increasing the presynaptic action potential recruitment, decreasing neurotransmitter release probability, decreasing the postsynaptic response, and preventing postsynaptic hyperexcitability, resulting in greater early long-term potentiation but reduced late long-term potentiation. Infection abolished early and late long-term potentiation in wild-type rats, whereas the late long-term potentiation was partially preserved in Gsap knockout rats. Furthermore, hippocampi from knockout rats, and both the wild-type and knockout rats following infection, exhibited a GSAP-dependent increase in neurotransmitter release probability and postsynaptic hyperexcitability. These results elucidate an unappreciated role for GSAP in innate immunity and highlight the contribution of GSAP to end-organ dysfunction during infection.NEW & NOTEWORTHY Pneumonia is a common cause of end-organ dysfunction, both during and in the aftermath of infection. In particular, pneumonia is a common cause of lung injury, increased risk of myocardial infarction, and neurocognitive dysfunction, although the mechanisms responsible for such increased risk are unknown. Here, we reveal that gamma-secretase activating protein, which contributes to the amyloidogenic pathway, is important for end-organ dysfunction following infection.


Assuntos
Doença de Alzheimer , Pneumonia Bacteriana , Ratos , Animais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Insuficiência de Múltiplos Órgãos , Peptídeos beta-Amiloides/metabolismo , Neurotransmissores
12.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37214860

RESUMO

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.

13.
bioRxiv ; 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993361

RESUMO

We previously identified Keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole-body Krtcap3 knock-out (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lock-down orders and was completed during the pandemic with a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study by genotype interaction where WT had significantly higher CORT relative to KO in Study 1, with no differences in Study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.

14.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798326

RESUMO

Background: We have generated a rat model similar to the Four Core Genotypes mouse model, allowing comparison of XX and XY rats with the same type of gonad. The model detects novel sex chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype. Methods: XY rats were produced with an autosomal transgene of Sry , the testis-determining factor gene, which were fathers of XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females that have XX and XY progeny with ovaries. These groups can be compared to detect sex differences caused by sex chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Results: We have measured numerous phenotypes to characterize this model, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Numerous phenotypes previously found to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development. Conclusion: The results establish a powerful new model to discriminate sex chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.

15.
J Immunol ; 210(7): 935-946, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762954

RESUMO

IL-21 is essential for type 1 diabetes (T1D) development in the NOD mouse model. IL-21-expressing CD4 T cells are present in pancreatic islets where they contribute to T1D progression. However, little is known about their phenotype and differentiation states. To fill this gap, we generated, to our knowledge, a novel IL-21 reporter NOD strain to further characterize IL-21+ CD4 T cells in T1D. IL-21+ CD4 T cells accumulate in pancreatic islets and recognize ß cell Ags. Single-cell RNA sequencing revealed that CD4 T effector cells in islets actively express IL-21 and they are highly diabetogenic despite expressing multiple inhibitory molecules, including PD-1 and LAG3. Islet IL-21+ CD4 T cells segregate into four phenotypically and transcriptionally distinct differentiation states, that is, less differentiated early effectors, T follicular helper (Tfh)-like cells, and two Th1 subsets. Trajectory analysis predicts that early effectors differentiate into both Tfh-like and terminal Th1 cells. We further demonstrated that intrinsic IL-27 signaling controls the differentiation of islet IL-21+ CD4 T cells, contributing to their helper function. Collectively, our study reveals the heterogeneity of islet-infiltrating IL-21+ CD4 T cells and indicates that both Tfh-like and Th1 subsets produce IL-21 throughout their differentiation process, highlighting the important sources of IL-21 in T1D pathogenesis.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Linfócitos T CD4-Positivos/patologia , Camundongos Endogâmicos NOD , Ilhotas Pancreáticas/patologia
16.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36512407

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease resulting in pancreatic ß cell destruction. Coxsackievirus B3 (CVB3) infection and melanoma differentiation-associated protein 5-dependent (MDA5-dependent) antiviral responses are linked with T1D development. Mutations within IFIH1, coding for MDA5, are correlated with T1D susceptibility, but how these mutations contribute to T1D remains unclear. Utilizing nonobese diabetic (NOD) mice lacking Ifih1 expression (KO) or containing an in-frame deletion within the ATPase site of the helicase 1 domain of MDA5 (ΔHel1), we tested the hypothesis that partial or complete loss-of-function mutations in MDA5 would delay T1D by impairing proinflammatory pancreatic macrophage and T cell responses. Spontaneous T1D developed in female NOD and KO mice similarly, but was significantly delayed in ΔHel1 mice, which may be partly due to a concomitant increase in myeloid-derived suppressor cells. Interestingly, KO male mice had increased spontaneous T1D compared with NOD mice. Whereas NOD and KO mice developed CVB3-accelerated T1D, ΔHel1 mice were protected partly due to decreased type I IFNs, pancreatic infiltrating TNF+ macrophages, IFN-γ+CD4+ T cells, and perforin+CD8+ T cells. Furthermore, ΔHel1 MDA5 protein had reduced ATP hydrolysis compared with wild-type MDA5. Our results suggest that dampened MDA5 function delays T1D, yet loss of MDA5 promotes T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Masculino , Feminino , Camundongos , Animais , Helicase IFIH1 Induzida por Interferon , Camundongos Endogâmicos NOD , Pâncreas/metabolismo , Macrófagos/metabolismo
17.
Diabetes ; 72(1): 135-148, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219827

RESUMO

Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1,519 male HS rats, with liver and adipose transcriptomes measured in >410 rats. Genotypes were imputed from low-coverage whole-genome sequencing. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), using both single nucleotide polymorphism (SNP)- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for fat pad weight and serum triglyceride pQTLs on Chr1, Krtcap3 for fat pad weight and serum triglyceride pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20, and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knockdown/out models, thereby shedding light on novel regulators of obesity.


Assuntos
Adiposidade , Insulinas , Ratos , Masculino , Humanos , Animais , Adiposidade/genética , Estudo de Associação Genômica Ampla , Obesidade/genética , Triglicerídeos , Insulinas/genética , Lipídeos , Polimorfismo de Nucleotídeo Único
18.
Front Genet ; 14: 1247232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38323241

RESUMO

We previously identified Keratinocyte-associated protein 3, Krtcap3, as a novel adiposity gene, but subsequently found that its impact on adiposity may depend on environmental stress. To more thoroughly understand the connection between Krtcap3, adiposity, and stress, we exposed wild-type (WT) and Krtcap3 knock-out (KO) rats to chronic stress then measured adiposity and behavioral outcomes. We found that KO rats displayed lower basal stress than WT rats under control conditions and exhibited metabolic and behavioral responses to chronic stress exposure. Specifically, stress-exposed KO rats gained more weight, consumed more food when socially isolated, and displayed more anxiety-like behaviors relative to control KO rats. Meanwhile, there were minimal differences between control and stressed WT rats. At study conclusion stress-exposed KO rats had increased corticosterone (CORT) relative to control KO rats with no differences between WT rats. In addition, KO rats, independent of prior stress exposure, had an increased CORT response to removal of their cage-mate (psychosocial stress), which was only seen in WT rats when exposed to chronic stress. Finally, we found differences in expression of the glucocorticoid receptor, Nr3c1, in the pituitary and colon between control and stress-exposed KO rats that were not present in WT rats. These data support that Krtcap3 expression affects stress response, potentially via interactions with Nr3c1, with downstream effects on adiposity and behavior. Future work is necessary to more thoroughly understand the role of Krtcap3 in the stress response.

19.
Front Genet ; 13: 942574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212147

RESUMO

Despite the obesity crisis in the United States, the underlying genetics are poorly understood. Our lab previously identified Keratinocyte-associated protein 3, Krtcap3, as a candidate gene for adiposity through a genome-wide association study in outbred rats, where increased liver expression of Krtcap3 correlated with decreased fat mass. Here we seek to confirm that Krtcap3 expression affects adiposity traits. To do so, we developed an in vivo whole-body Krtcap3 knock-out (KO) rat model. Wild-type (WT) and KO rats were placed onto a high-fat (HFD) or low-fat diet (LFD) at 6 weeks of age and were maintained on diet for 13 weeks, followed by assessments of metabolic health. We hypothesized that Krtcap3-KO rats will have increased adiposity and a worsened metabolic phenotype relative to WT. We found that KO male and female rats have significantly increased body weight versus WT, with the largest effect in females on a HFD. KO females also ate more and had greater adiposity, but were more insulin sensitive than WT regardless of diet condition. Although KO males weighed more than WT under both diet conditions, there were no differences in eating behavior or fat mass. Interestingly, KO males on a HFD were more insulin resistant than WT. This study confirms that Krtcap3 plays a role in body weight regulation and demonstrates genotype- and sex-specific effects on food intake, adiposity, and insulin sensitivity. Future studies will seek to better understand these sex differences, the role of diet, and establish a mechanism for Krtcap3 in obesity.

20.
Hypertension ; 79(11): 2519-2529, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36093781

RESUMO

BACKGROUND: Circadian rhythms play an essential role in physiological function. The molecular clock that underlies circadian physiological function consists of a core group of transcription factors, including the protein PER1 (Period1). Studies in mice show that PER1 plays a role in the regulation of blood pressure and renal sodium handling; however, the results are dependent on the strain being studied. Using male Dahl salt-sensitive (SS) rats with global knockout of PER1 (SSPer1-/-), we aim to test the hypothesis that PER1 plays a key role in the regulation of salt-sensitive blood pressure. METHODS: The model was generated using CRISPR/Cas9 and was characterized using radiotelemetry and measures of renal function and circadian rhythm. RESULTS: SSPer1-/- rats had similar mean arterial pressure when fed a normal 0.4% NaCl diet but developed augmented hypertension after three weeks on a high-salt (4% NaCl) diet. Despite being maintained on a normal 12:12 light:dark cycle, SSPer1-/- rats exhibited desynchrony mean arterial pressure rhythms on a high-salt diet, as evidenced by increased variability in the time of peak mean arterial pressure. SSPer1-/- rats excrete less sodium after three weeks on the high-salt diet. Furthermore, SSPer1-/- rats exhibited decreased creatinine clearance, a measurement of renal function, as well as increased signs of kidney tissue damage. SSPer1-/- rats also exhibited higher plasma aldosterone levels. CONCLUSIONS: Altogether, our findings demonstrate that loss of PER1 in Dahl SS rats causes an array of deleterious effects, including exacerbation of the development of salt-sensitive hypertension and renal damage.


Assuntos
Relógios Circadianos , Hipertensão , Nefropatias , Animais , Masculino , Ratos , Pressão Sanguínea/fisiologia , Relógios Circadianos/genética , Hipertensão/genética , Hipertensão/metabolismo , Rim/metabolismo , Camundongos Knockout , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ratos Endogâmicos Dahl , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...